320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452 | def create_rank_response_table(
config_dict: dict,
) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
"""
Create a rank repsonse table from a dictionary which contains the
configuration parameters. See docs at
https://cmatkhan.github.io/callingCardsTools/file_format_specs/yeast_rank_response/ # noqa
for details
Args:
config_dict (dict): A dictionary containing the configuration
parameters
Returns:
tuple: A tuple containing three DataFrames
(see rank_response_summarize):
1. A dataframe summarized where hte responsive_ratio is summarized by
rank_bin
2. The merged, labelled and sorted dataframe with both binding and
expression data
3. The random expectation dataframe
Raises:
KeyError: if the configuration dictionary is missing any of the
required keys
FileExistsError: if the data files do not exist
AttributeError: if there are NA values in the effect or pvalue columns
ValueError: if there are incomplete cases in the data
"""
# validate the configuration key/value pairs
args = validate_config(config_dict)
try:
if len(args["binding_data_path"]) > 1:
binding_data = combine_data(
data_paths=args["binding_data_path"],
identifier_col=args["binding_identifier_col"],
effect_col=args["binding_effect_col"],
pval_col=args["binding_pvalue_col"],
source=args["binding_source"],
data_type="binding",
)
else:
binding_data = read_in_data(
data_path=args["binding_data_path"][0],
identifier_col=args["binding_identifier_col"],
effect_col=args["binding_effect_col"],
pval_col=args["binding_pvalue_col"],
source=args["binding_source"],
data_type="binding",
)
except (KeyError, FileExistsError, AttributeError) as exc:
logger.error("Error reading in binding data: %s", exc)
raise
try:
if len(args["expression_data_path"]) > 1:
expression_data = combine_data(
data_paths=args["expression_data_path"],
identifier_col=args["expression_identifier_col"],
effect_col=args["expression_effect_col"],
pval_col=args["expression_pvalue_col"],
source=args["expression_source"],
data_type="expression",
)
else:
expression_data = read_in_data(
data_path=args["expression_data_path"][0],
identifier_col=args["expression_identifier_col"],
effect_col=args["expression_effect_col"],
pval_col=args["expression_pvalue_col"],
source=args["expression_source"],
data_type="expression",
)
except (KeyError, FileExistsError, AttributeError) as exc:
logger.error("Error reading in expression data: %s", exc)
raise
labeled_expression_data = label_responsive_genes(
expression_data,
args["expression_effect_thres"],
args["expression_pvalue_thres"],
args["normalization_cutoff"],
)
# Calculate counts for responsive and unresponsive
responsive_unresponsive_counts = labeled_expression_data[
"responsive"
].value_counts()
# Create the DataFrame
random_expectation_df = pd.DataFrame(
{
"unresponsive": [responsive_unresponsive_counts.get(False, 0)],
"responsive": [responsive_unresponsive_counts.get(True, 0)],
}
)
# Calculate the 'random' column
total_expression_genes = random_expectation_df.sum(axis=1)
random_expectation_df["random"] = (
random_expectation_df["responsive"] / total_expression_genes
)
df = labeled_expression_data.merge(
binding_data[["binding_effect", "binding_pvalue", "binding_source", "feature"]],
how="inner",
on="feature",
)
# test that there no incomplete cases. raise an error if there are
if df.isnull().values.any():
raise ValueError("There are incomplete cases in the data")
logger.debug(
"There are %s genes in the data after merging "
"the %s binding data and "
" %s expression data",
str(df.shape[0]),
args["binding_source"],
args["expression_source"],
)
df_expression_labeled_binding_ranked = bin_by_binding_rank(
df, args["rank_bin_size"], args["rank_by_binding_effect"]
)
df_expression_labeled_binding_ranked["random"] = random_expectation_df[
"random"
].iloc[0]
rank_response_df = compute_rank_response(df_expression_labeled_binding_ranked)
return rank_response_df, df_expression_labeled_binding_ranked, random_expectation_df
|