Skip to content

SummaryParser

SummaryParser

Class to parse summary data with provided grouping and ordering parameters. Able to convert this data into qBED format, a variant of the BED format.

Source code in callingcardstools/Alignment/SummaryParser.py
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
class SummaryParser():
    """
    Class to parse summary data with provided grouping and ordering parameters.
    Able to convert this data into qBED format, a variant of the 
    BED format.
    """

    _query_string = "status == 0"

    _summary_columns = {'id': str, 'status': int, 'mapq': int, 'flag': int, 'chr': str,
                        'strand': str, 'five_prime': str, 'insert_start': str,
                        'insert_stop': str, 'insert_seq': str, 'depth': int}

    _grouping_fields = {'chr', 'insert_start', 'insert_stop', 'strand'}

    _qbed_col_order = \
        ['chr', 'start', 'end', 'depth', 'strand']

    _summary = None

    def __init__(self, summary: Union[str, pd.DataFrame]) -> None:
        """
        Initialize SummaryParser with given summary data.

        Args:
            summary (Union[str, pd.DataFrame]): Either a path to a CSV 
                file or an existing pandas DataFrame.
        """
        self.summary = summary

    @property
    def query_string(self):
        """
        Query string for filtering summary data. Default is "status == 0".
        """
        return self._query_string

    @query_string.setter
    def query_string(self, query_string: str):
        self._query_string = query_string

    @property
    def summary(self):
        """
        The summary data in DataFrame format.
        """
        return self._summary

    @summary.setter
    def summary(self, summary: Union[str, pd.DataFrame]):
        # check input
        if isinstance(summary, str):
            # check genome and index paths
            if not os.path.exists(summary):
                raise FileNotFoundError(f"Input file DNE: {summary}")
            summary = pd.read_csv(summary, dtype=self.summary_columns)
        elif isinstance(summary, pd.DataFrame):
            logger.info(f'passed a dataframe to SummaryParser')
        else:
            raise IOError(f'{summary} is not a data type recognized ' +
                          'as a summary by SummaryParser')

        if 'depth' not in summary.columns:
            summary['depth'] = 1

        self._verify(summary)

        self._summary = summary

    @property
    def summary_columns(self):
        """
        The expected structure (column names and data types) of 
        the summary data.
        """
        return self._summary_columns

    @summary_columns.setter
    def summary_columns(self, col_list: list):
        self._summary_columns = col_list

    @property
    def grouping_fields(self):
        """
        The set of fields to be used for grouping data in summary.
        """
        return self._grouping_fields

    @grouping_fields.setter
    def grouping_fields(self, new_grouping_fields: dict):
        self.grouping_fields = new_grouping_fields

    @property
    def qbed_col_order(self):
        """
        Order of columns to be used when generating a DataFrame in qBED format.
        """
        return self._qbed_col_order

    @qbed_col_order.setter
    def qbed_col_order(self, new_col_order: list):
        self._qbed_col_order = new_col_order

    def _verify(self, summary: pd.DataFrame) -> None:
        """
        Verifies that the provided summary DataFrame matches the 
        expected structure.

        Args:
            summary (pd.DataFrame): Summary data as a DataFrame.

        Raises:
            ValueError: Raised when the structure of the summary data does 
                not match the expected structure.
        """
        if not len(set(self.summary_columns.keys()) - set(summary.columns)) == 0:
            raise ValueError(
                f"The expected summary columns are "
                f"{','.join(self.summary_columns)} in that order")

    def to_qbed(self) -> pd.DataFrame:
        """
        Converts the summary data into a DataFrame in qBED format. It uses 
        the query string to filter data, groups by the defined grouping fields, 
        and orders columns as defined in qbed_col_order.

        Returns:
            pd.DataFrame: A DataFrame in qBED format.
        """

        local_grouping_fields = self.grouping_fields

        return self.summary\
            .query(self.query_string)[['chr', 'insert_start', 'insert_stop', 'depth', 'strand']]\
            .groupby(list(local_grouping_fields))['depth']\
            .agg(['sum'])\
            .reset_index()\
            .rename(columns={'sum': 'depth', 'insert_start': 'start', 'insert_stop': 'end'})[self.qbed_col_order]

    def write_qbed(self, output_path: str) -> None:
        """
        Writes the qBED-formatted DataFrame to a text file at the given path.

        Args:
            output_path (str): The path to the file where the output 
                should be written.
        """
        if not output_path[-4:] in ['.tsv', 'txt']:
            logger.warning(
                f"output path {output_path} does not end with tsv or txt")
        self.to_qbed().to_csv(output_path,
                              sep="\t",
                              header=None,
                              index=False)

grouping_fields property writable

The set of fields to be used for grouping data in summary.

qbed_col_order property writable

Order of columns to be used when generating a DataFrame in qBED format.

query_string property writable

Query string for filtering summary data. Default is “status == 0”.

summary property writable

The summary data in DataFrame format.

summary_columns property writable

The expected structure (column names and data types) of the summary data.

__init__(summary)

Initialize SummaryParser with given summary data.

Parameters:

Name Type Description Default
summary Union[str, DataFrame]

Either a path to a CSV file or an existing pandas DataFrame.

required
Source code in callingcardstools/Alignment/SummaryParser.py
35
36
37
38
39
40
41
42
43
def __init__(self, summary: Union[str, pd.DataFrame]) -> None:
    """
    Initialize SummaryParser with given summary data.

    Args:
        summary (Union[str, pd.DataFrame]): Either a path to a CSV 
            file or an existing pandas DataFrame.
    """
    self.summary = summary

to_qbed()

Converts the summary data into a DataFrame in qBED format. It uses the query string to filter data, groups by the defined grouping fields, and orders columns as defined in qbed_col_order.

Returns:

Type Description
DataFrame

pd.DataFrame: A DataFrame in qBED format.

Source code in callingcardstools/Alignment/SummaryParser.py
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
def to_qbed(self) -> pd.DataFrame:
    """
    Converts the summary data into a DataFrame in qBED format. It uses 
    the query string to filter data, groups by the defined grouping fields, 
    and orders columns as defined in qbed_col_order.

    Returns:
        pd.DataFrame: A DataFrame in qBED format.
    """

    local_grouping_fields = self.grouping_fields

    return self.summary\
        .query(self.query_string)[['chr', 'insert_start', 'insert_stop', 'depth', 'strand']]\
        .groupby(list(local_grouping_fields))['depth']\
        .agg(['sum'])\
        .reset_index()\
        .rename(columns={'sum': 'depth', 'insert_start': 'start', 'insert_stop': 'end'})[self.qbed_col_order]

write_qbed(output_path)

Writes the qBED-formatted DataFrame to a text file at the given path.

Parameters:

Name Type Description Default
output_path str

The path to the file where the output should be written.

required
Source code in callingcardstools/Alignment/SummaryParser.py
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
def write_qbed(self, output_path: str) -> None:
    """
    Writes the qBED-formatted DataFrame to a text file at the given path.

    Args:
        output_path (str): The path to the file where the output 
            should be written.
    """
    if not output_path[-4:] in ['.tsv', 'txt']:
        logger.warning(
            f"output path {output_path} does not end with tsv or txt")
    self.to_qbed().to_csv(output_path,
                          sep="\t",
                          header=None,
                          index=False)